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Ratio of canonical and microcanonical temperatures of a vibratory antiferromagnetic Ising chain
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The ratio of canonical and microcanonical temperatdigd,, of a vibratory antiferromagnetic Ising chain
with N spins is given by analytical calculation. The resuligT ,= 1+ O(N™1), which is consistent with the
natural assumption given by Rugh.
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A quite simple statistical principle claims that the mea- H=H,+H,. (1)
sured value of a thermodynamic observable of a system and
the ensemble average or the time average of the observabte,{S} is the Hamiltonian of the one-dimensional antiferro-
are identical at the thermodynamic limit. Some examples ofmagnetic Ising chain such that
the principle were given in canonical ensemble, which de- N
scribes the thermodynamics of a closed sysféin For an _ :
isolated classical Hamiltonian system, the time average of an Hb_JiZZ:I.(SS+l+ bi4. @
observable of a system may be replaced by the average of the
microcanonical ensemble. In present understanding, there dere, we takeSy.;=S,. The HamiltonianH,(q,p) of the
an equivalent canonical ensemble for the system, whicii@rmonic vibration of the sites is

gives the same average values for all observables at the ther- N
modynamic limit[1]. A typical observable is temperatufe H,(q,p)=> (p2/2+G2/2). 3)
In a canonical ensemble, the temperature is a free parameter, =1 '

which determines the internal energy=U(T.) of a system.
But in a microcanonical ensemble the eneEpf a system
is a free parameter, and the temperature is an observable ber o —1 beN—M. We h h ¢
be calculated a%¥,=T ,(E) [1,2]. Here the subscripts and the number 0555, =1 beN—M. We have the energy o
g HS : : }he chain such that
u represent the canonical and the microcanonical ensemble
averages, respectively. The equivalence of the two en- Ey(M,N)=J(N—M)/2. (4)
sembles means that, =T, for E=U at the thermodynamic
limit. Rugh proposed a method calculating the reciprocalThe corresponding configuration number is
temperature in a microcanonical ensemble and deduced an "
equation of the ratidT./T, for some classical interaction I'(M,N)=2Cy . ®
model[3,4]. He gave the result that the rafiq /T, differs . - i o
from one by a term of ordeN ™! under the natural assump- S€tting M/N=a and according to the definitions,
tion on the fluctuations in the kinetic enerf;5]. However, —¢INI'/9E,, we have the reciprocal temperature of the chain
the assumption, up to now, lacks a rigorous argument for ' & microcanonical ensemble as follows:
system with interaction because of the difficulty in the ana- INT(M+1,N)—InT(M,N) 2 1-a

For a closed isolated antiferromagnetic Ising chain as de-
Gribed by Eq(2), let the number 05S;,;,=—1 beM, and

lytical calculation. B,= lim =——ln——.
One-dimension ferromagnetic and antiferromagnetic = n_ Eb(M+1N)—E,(M,N) J  a
chains have been widely considered in statistical physics and (6)

nonlinear physic$1,2,6,7. In this paper, we give a descrip- ) _

tive example to calculate the ratid,/T, of a classical The aboye result means tha_t -the chain has a negative tem-
Hamiltonian system, which is an antiferromagnetic IsingPerature ifM <N/2, but a positive temperature M > N/2.

chain with N spins and its sites vibrate harmonically. Our ~ The vibratory one-dimensional antiferromagnetic chain
model is closer to a practical system. The rafig/T,, is with Hamlltonlan(l) has the total configuration number cor-
given by a rigorous analytical calculation. The result isfesponding to the enerdy=Ne,

Tc/T”=1+O(N*1), which is consistent with the natural
assumptiori4,5].

The Ising chain had sites labeled byg;, i=1,... N
and there is a spis; on every site. Moreover, every site
vibrates as a three-dimension harmonic oscillator. Then thevhereA is a constant, an&=J(N—M)/2 since the Hamil-
total Hamiltonian of the system is tonianH,=0 in Eq.(3). Here, we use the bulk volume rather

than surface area to define the functidiM) because they
are the same for largd. The Boltzmann constant and Planck
*Electronic address: junluo@public.wh.hb.cn constant are both taken to be unity in our calculation.
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For the chain as described by Hd), the total entropy is

the sum of the vibratory part and the antiferromagnetic part h(t)=

of the Ising chain in the thermodynamic limit. The reciprocal

temperature can be given by the thermal equilibrium of the

two parts such that
1-a

a

3
=B,= 3 —,
s-5(1-a)

In

8

wherea=M/N, andM determines the largest terf( I\W) in
the sum(7). It is noted that is independent of the total site
numberN. The condition of positive temperature meavis

>N/2 andM <N for the finite temperature. Consequently,
we can obtain

_ NeMI2e-d1-a)l N8R
M= 1+ 3V[2e—J(1-a)] = 1+ eIB,12 ©)
and
— JN JN
b™ 1+e32e—31-a)] 14 @lBuR2 (10

Using the Stirling formula, we can write the configuration
numberQ(M) in the form as

J(N=M)]3N
whereB is independent oM, i.e.,
ANN+1/2 . N
B VZW(N—M)N—M+1/2MM+1/2E [1_ (1-a)| ,
(12
and
M—1/2 M—M
-|1- In 7
N N(1—a)
M+1/2 M—M
TN In _ (13

Takinga—a=t, the total configuration numbéX(E) can
be written in the integral form by Euler’s formula,

_ —1/2
1-a

NBJ _ ( 1- —_)
-a 1—-a

N
Q<E>=M2:OQ<M>

-1/2

eNh(t)dt] ,

@) 1+ =

a

14

where
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3In 1+Tﬂt) 2“'[ (1- a— t)'n(l—g)
— t
—(a+t)|n<1+:). (15
a

The reciprocal temperature of the system denoted in a
is given by the definition

microcanonical ensemble
1/T,(E)=aIn Q(E)/JE. According to the definition, we can
directly obtain the following result

(k]
T\ H@p

This equation is the same as that given by R{§H]. The
symbols(C), and (C). represent the microcanonical en-

T.(E) (16)

semble and canonical ensemble averages of an obse@able

respectively.

The temperature of the system in the canonical ensemble

is

T(E)= 55 (Hi(aP)iEDc. a7

The ratio of the temperatures can be expressed as follows:

Te(E) < ! E> (18
Tu(E (a.p)’/,
So, we have
1
TC(E)/TM(E):<H_Hb;E>c<E_Hb;E>
o
1

=<U—<Hb>c)m(E_Hb), (19

wherewq(X) represents the first-order momenvofurther-
more, the ratio of the temperatures can be written as

1
TC(E)/TM(E)=<H—Hb;E>C<E_—Hb;E>

|

"
1-E,/E
1-Hy/E

U <Hb>c
E-E,
_ U_<Hb>c

E-E,

V=Me s otuatay,
b

M1

ma[1+9(t)]

(20)
E-
where the functiorg(t) is defined as

ks

=1+g(t).
ﬁ/.l,

(21)
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According to Euler's formula as used in E4.4), we have

Ofua[g()]}

_ —-1/2
1-a t
NBJ _ ( 1- —_)
-a 1—-a

Q(E)

-1/2
g(t)eNdt

1+ =
a
=0

(22

To calculateO{u4[g(t)]} in Eg. (22), we can use the

Laplace formula: iff (t) andh(t) are analytical ate[0,b],
and h(t) has the largest valuad(0) at t=0, and h’(0)

=h"(0)=---=h®=1D0)=0, hP(0)£0; f(0)=f'(0)
=...=fl@=0)=0, f@(0)#0, then
b
f f(t)eN"dt
0
ap as as
— gNh(©) S
€ N(a+1)/p " N(a+2)/p - N(@+3)/p * (29

wherea,, a,, a; are determined by, = [(A(w)e “do,
i=1,2,3,...,with

(@+1)/p £ (q)
Afw)=2| - P 0 J@rnm-1,
P h®(0) q!
1 p' (q+2)/p f(q+l)(o)
A =) - R
2(®) p h(P(0) (g+21)!
— f(q)(—o)h(p+1)(0) ol o@+2p-1
q!(p+1)h®(0) '

(24)

In our calculation, the functiorh(t) in Eq. (15 has
h(0)=h’(0)=0, h"(0)=—[(JB,)¥12+1/a(1—a)], and
h"”(0)=(3B,)%/36—1/(1—a)>*+1/a®> at t=0, which
means p=2. The function f(t)=[1—t/(1—a)] ¥?(1
+ t/a) "2g(t) hasf(0)=0, f'(0)=—Jp,/6, and f"(0)
=(3B,)?/18- 3B, (2a—1)/6a(1—a), which meansy=1.
So we have

a

NBfliaf(t)eNh(t)dt:NB{ fl_af(t)eNh(t)dt
- 0

+ jaf(—t)e’\‘h(‘t)dt}
0

=C;BN"Y2+O(N™Y), (25
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with
2 3/2
C1: > p— —
(JB,)?112+1/a(1-a)
(98,)? _IBu(2a-1)|\m
36 12a(1—a) | 2
J,BM[(JB,L)‘?’_ 1 1
6| 36 (1-a? a’
4'(JBM)2+_ 1 _'
12 a(1-a)]
Similarly, we can obtain
1 t —-1/2 —-1/2
Q(E)=NBJ - 1——_) 1+=| eN"Odt
-a 1-a a
=C,BJN+0(1), (26)

with

2
C2: \/ 2 — p—
(3B,)%12+1/a(1-a)

At last, we get

NB[ fl_af(t)e'“h(t)dw jaf(—t)e’\‘h(‘t)dt}
0 0

malg(t)]= Q(E)

C
= ZIN"1+O(N" %), (27)
C,

If settingU =E, then(Hy).=E,. Equation(20) leads to
the result T./T,=1+(C1/C,)N~1+O(N~¥?), which is
consistent with the natural assumptiegh5]. The above dis-
cussion shows that the temperature of a microcanonical en-
semble and that of a canonical ensemble are equivalent for a
vibratory antiferromagnetic Ising chain at the thermody-
namic limit.
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